Copied to
clipboard

G = C23.686C24order 128 = 27

403rd central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.686C24, C24.451C23, C22.3492- 1+4, C22.4592+ 1+4, C23.Q887C2, C23.100(C4○D4), (C23×C4).495C22, (C2×C42).713C22, (C22×C4).599C23, C23.8Q8138C2, C23.7Q8112C2, C23.11D4120C2, C23.23D4.75C2, C23.10D4.65C2, (C22×D4).282C22, C24.C22170C2, C24.3C22.75C2, C23.81C23126C2, C23.63C23185C2, C2.103(C22.32C24), C2.C42.390C22, C2.119(C22.45C24), C2.69(C22.50C24), C2.41(C22.56C24), C2.62(C22.34C24), C2.105(C22.33C24), C2.113(C22.47C24), (C2×C4).229(C4○D4), (C2×C4⋊C4).496C22, C22.547(C2×C4○D4), (C2×C22⋊C4).322C22, SmallGroup(128,1518)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.686C24
C1C2C22C23C22×C4C23×C4C23.23D4 — C23.686C24
C1C23 — C23.686C24
C1C23 — C23.686C24
C1C23 — C23.686C24

Generators and relations for C23.686C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=abc, e2=b, g2=ba=ab, ac=ca, ede-1=ad=da, geg-1=ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, gdg-1=abd, fg=gf >

Subgroups: 452 in 217 conjugacy classes, 88 normal (82 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C22×D4, C23.7Q8, C23.8Q8, C23.23D4, C23.63C23, C24.C22, C24.3C22, C23.10D4, C23.Q8, C23.11D4, C23.81C23, C23.686C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C22.32C24, C22.33C24, C22.34C24, C22.45C24, C22.47C24, C22.50C24, C22.56C24, C23.686C24

Smallest permutation representation of C23.686C24
On 64 points
Generators in S64
(1 55)(2 56)(3 53)(4 54)(5 61)(6 62)(7 63)(8 64)(9 43)(10 44)(11 41)(12 42)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(21 58)(22 59)(23 60)(24 57)(25 32)(26 29)(27 30)(28 31)(33 40)(34 37)(35 38)(36 39)
(1 44)(2 41)(3 42)(4 43)(5 52)(6 49)(7 50)(8 51)(9 54)(10 55)(11 56)(12 53)(13 31)(14 32)(15 29)(16 30)(17 62)(18 63)(19 64)(20 61)(21 39)(22 40)(23 37)(24 38)(25 46)(26 47)(27 48)(28 45)(33 59)(34 60)(35 57)(36 58)
(1 12)(2 9)(3 10)(4 11)(5 18)(6 19)(7 20)(8 17)(13 26)(14 27)(15 28)(16 25)(21 34)(22 35)(23 36)(24 33)(29 45)(30 46)(31 47)(32 48)(37 58)(38 59)(39 60)(40 57)(41 54)(42 55)(43 56)(44 53)(49 64)(50 61)(51 62)(52 63)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 31 44 13)(2 25 41 46)(3 29 42 15)(4 27 43 48)(5 58 52 36)(6 22 49 40)(7 60 50 34)(8 24 51 38)(9 16 54 30)(10 45 55 28)(11 14 56 32)(12 47 53 26)(17 33 62 59)(18 37 63 23)(19 35 64 57)(20 39 61 21)
(1 7)(2 51)(3 5)(4 49)(6 43)(8 41)(9 62)(10 18)(11 64)(12 20)(13 21)(14 40)(15 23)(16 38)(17 54)(19 56)(22 32)(24 30)(25 59)(26 34)(27 57)(28 36)(29 37)(31 39)(33 46)(35 48)(42 52)(44 50)(45 58)(47 60)(53 61)(55 63)
(1 45 10 31)(2 32 11 46)(3 47 12 29)(4 30 9 48)(5 60 20 37)(6 38 17 57)(7 58 18 39)(8 40 19 59)(13 44 28 55)(14 56 25 41)(15 42 26 53)(16 54 27 43)(21 50 36 63)(22 64 33 51)(23 52 34 61)(24 62 35 49)

G:=sub<Sym(64)| (1,55)(2,56)(3,53)(4,54)(5,61)(6,62)(7,63)(8,64)(9,43)(10,44)(11,41)(12,42)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,58)(22,59)(23,60)(24,57)(25,32)(26,29)(27,30)(28,31)(33,40)(34,37)(35,38)(36,39), (1,44)(2,41)(3,42)(4,43)(5,52)(6,49)(7,50)(8,51)(9,54)(10,55)(11,56)(12,53)(13,31)(14,32)(15,29)(16,30)(17,62)(18,63)(19,64)(20,61)(21,39)(22,40)(23,37)(24,38)(25,46)(26,47)(27,48)(28,45)(33,59)(34,60)(35,57)(36,58), (1,12)(2,9)(3,10)(4,11)(5,18)(6,19)(7,20)(8,17)(13,26)(14,27)(15,28)(16,25)(21,34)(22,35)(23,36)(24,33)(29,45)(30,46)(31,47)(32,48)(37,58)(38,59)(39,60)(40,57)(41,54)(42,55)(43,56)(44,53)(49,64)(50,61)(51,62)(52,63), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,31,44,13)(2,25,41,46)(3,29,42,15)(4,27,43,48)(5,58,52,36)(6,22,49,40)(7,60,50,34)(8,24,51,38)(9,16,54,30)(10,45,55,28)(11,14,56,32)(12,47,53,26)(17,33,62,59)(18,37,63,23)(19,35,64,57)(20,39,61,21), (1,7)(2,51)(3,5)(4,49)(6,43)(8,41)(9,62)(10,18)(11,64)(12,20)(13,21)(14,40)(15,23)(16,38)(17,54)(19,56)(22,32)(24,30)(25,59)(26,34)(27,57)(28,36)(29,37)(31,39)(33,46)(35,48)(42,52)(44,50)(45,58)(47,60)(53,61)(55,63), (1,45,10,31)(2,32,11,46)(3,47,12,29)(4,30,9,48)(5,60,20,37)(6,38,17,57)(7,58,18,39)(8,40,19,59)(13,44,28,55)(14,56,25,41)(15,42,26,53)(16,54,27,43)(21,50,36,63)(22,64,33,51)(23,52,34,61)(24,62,35,49)>;

G:=Group( (1,55)(2,56)(3,53)(4,54)(5,61)(6,62)(7,63)(8,64)(9,43)(10,44)(11,41)(12,42)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,58)(22,59)(23,60)(24,57)(25,32)(26,29)(27,30)(28,31)(33,40)(34,37)(35,38)(36,39), (1,44)(2,41)(3,42)(4,43)(5,52)(6,49)(7,50)(8,51)(9,54)(10,55)(11,56)(12,53)(13,31)(14,32)(15,29)(16,30)(17,62)(18,63)(19,64)(20,61)(21,39)(22,40)(23,37)(24,38)(25,46)(26,47)(27,48)(28,45)(33,59)(34,60)(35,57)(36,58), (1,12)(2,9)(3,10)(4,11)(5,18)(6,19)(7,20)(8,17)(13,26)(14,27)(15,28)(16,25)(21,34)(22,35)(23,36)(24,33)(29,45)(30,46)(31,47)(32,48)(37,58)(38,59)(39,60)(40,57)(41,54)(42,55)(43,56)(44,53)(49,64)(50,61)(51,62)(52,63), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,31,44,13)(2,25,41,46)(3,29,42,15)(4,27,43,48)(5,58,52,36)(6,22,49,40)(7,60,50,34)(8,24,51,38)(9,16,54,30)(10,45,55,28)(11,14,56,32)(12,47,53,26)(17,33,62,59)(18,37,63,23)(19,35,64,57)(20,39,61,21), (1,7)(2,51)(3,5)(4,49)(6,43)(8,41)(9,62)(10,18)(11,64)(12,20)(13,21)(14,40)(15,23)(16,38)(17,54)(19,56)(22,32)(24,30)(25,59)(26,34)(27,57)(28,36)(29,37)(31,39)(33,46)(35,48)(42,52)(44,50)(45,58)(47,60)(53,61)(55,63), (1,45,10,31)(2,32,11,46)(3,47,12,29)(4,30,9,48)(5,60,20,37)(6,38,17,57)(7,58,18,39)(8,40,19,59)(13,44,28,55)(14,56,25,41)(15,42,26,53)(16,54,27,43)(21,50,36,63)(22,64,33,51)(23,52,34,61)(24,62,35,49) );

G=PermutationGroup([[(1,55),(2,56),(3,53),(4,54),(5,61),(6,62),(7,63),(8,64),(9,43),(10,44),(11,41),(12,42),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(21,58),(22,59),(23,60),(24,57),(25,32),(26,29),(27,30),(28,31),(33,40),(34,37),(35,38),(36,39)], [(1,44),(2,41),(3,42),(4,43),(5,52),(6,49),(7,50),(8,51),(9,54),(10,55),(11,56),(12,53),(13,31),(14,32),(15,29),(16,30),(17,62),(18,63),(19,64),(20,61),(21,39),(22,40),(23,37),(24,38),(25,46),(26,47),(27,48),(28,45),(33,59),(34,60),(35,57),(36,58)], [(1,12),(2,9),(3,10),(4,11),(5,18),(6,19),(7,20),(8,17),(13,26),(14,27),(15,28),(16,25),(21,34),(22,35),(23,36),(24,33),(29,45),(30,46),(31,47),(32,48),(37,58),(38,59),(39,60),(40,57),(41,54),(42,55),(43,56),(44,53),(49,64),(50,61),(51,62),(52,63)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,31,44,13),(2,25,41,46),(3,29,42,15),(4,27,43,48),(5,58,52,36),(6,22,49,40),(7,60,50,34),(8,24,51,38),(9,16,54,30),(10,45,55,28),(11,14,56,32),(12,47,53,26),(17,33,62,59),(18,37,63,23),(19,35,64,57),(20,39,61,21)], [(1,7),(2,51),(3,5),(4,49),(6,43),(8,41),(9,62),(10,18),(11,64),(12,20),(13,21),(14,40),(15,23),(16,38),(17,54),(19,56),(22,32),(24,30),(25,59),(26,34),(27,57),(28,36),(29,37),(31,39),(33,46),(35,48),(42,52),(44,50),(45,58),(47,60),(53,61),(55,63)], [(1,45,10,31),(2,32,11,46),(3,47,12,29),(4,30,9,48),(5,60,20,37),(6,38,17,57),(7,58,18,39),(8,40,19,59),(13,44,28,55),(14,56,25,41),(15,42,26,53),(16,54,27,43),(21,50,36,63),(22,64,33,51),(23,52,34,61),(24,62,35,49)]])

32 conjugacy classes

class 1 2A···2G2H2I2J4A···4P4Q···4U
order12···22224···44···4
size11···14484···48···8

32 irreducible representations

dim111111111112244
type++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C4○D4C4○D42+ 1+42- 1+4
kernelC23.686C24C23.7Q8C23.8Q8C23.23D4C23.63C23C24.C22C24.3C22C23.10D4C23.Q8C23.11D4C23.81C23C2×C4C23C22C22
# reps111132111318431

Matrix representation of C23.686C24 in GL6(𝔽5)

100000
010000
001000
000100
000040
000004
,
400000
040000
001000
000100
000010
000001
,
100000
010000
004000
000400
000010
000001
,
010000
400000
003000
000300
000030
000002
,
300000
030000
001000
001400
000001
000010
,
400000
010000
001300
000400
000010
000001
,
200000
030000
001000
000100
000001
000040

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,2],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,1,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,3,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,1,0] >;

C23.686C24 in GAP, Magma, Sage, TeX

C_2^3._{686}C_2^4
% in TeX

G:=Group("C2^3.686C2^4");
// GroupNames label

G:=SmallGroup(128,1518);
// by ID

G=gap.SmallGroup(128,1518);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,784,253,232,758,723,1571,346,192]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=a*b*c,e^2=b,g^2=b*a=a*b,a*c=c*a,e*d*e^-1=a*d=d*a,g*e*g^-1=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g^-1=a*b*d,f*g=g*f>;
// generators/relations

׿
×
𝔽